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Higgs production at the LHC

* The Higgs boson 1s the missing particle of the SM

* Its discovery is the main reason the LHC has been built for
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* The main production channel is gluon-gluon fusion via a quark loop



QCD corrections

* The cross-section can be computed in perturbative QCD
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* NLO corrections turn out to be huge ( ~ 100 %)  [Spira et al. 1995]

* The next order is needed to asses the convergence of the series

* The full calculation is beyond the current reach (diagrams with up to 3 loops
and massive internal lines)



The heavy top approximation

* EW precision data tell us that the SM Higgs mass should be <300 GeV
e This is well below the two top threshold: 7 > 1

* We can integrate out the top quark and work 1n an eftective theory (EFT)
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* but also NNLO  [Anastasiou and Melnikov, 2002;
Harlander and Kilgore, 2002;
Ravindran, Smith and van Neerven, 2003]



How good 1s 1t ?

* The top mass dependence 1s usually kept at LLO, while higher orders are
computed in the EFT:

o)
o= JLO(mt) (—LO)
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* When tested against exact NLO the EFT is accurate at the percent level for
mp< 2 m,

* Surprisingly the agreement 1s of order 10 % also for my ~ 1 TeV !

What 1s the reason for this spectacular agreement ?



Dominant contributions

* The hadronic cross-section 1s dominated by soft and virtual terms (delta and plus)
* These contributions are almost insensitive to the top mass
* For instance the NLO coefhicient function in the gg channel is:

parton luminosity
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* This should remain true at NNLO as well
* Can we make a more quantitative statement ?
* We can compute top mass suppressed contributions to the NNLO cross-section



Asymptotic expansion

* FFull NNLO calculation with top mass not currently feasible
* One can perform an asymptotic expansions of the Feynman diagrams

[e.g. Smirnov 2002]

* The cross-section can be written as
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e The first term 1s the EFT one

* Top mass suppressed corrections to NLO known for a long time
[Dawson, Kauffman 1993]

* Now also computed at NNLO by two different groups
[Harlander, Ozeren 2009
Pak, Rogal, Steinhauser 2009]

* Tools exist to automatize the calculation (not going into the details)

... however ...



Problems at large §

* The asymptotic expansion assumes

\/§7 mpg < th

* Clearly at the LHC the partonic c.o.m. energy can reach values far beyond m,
* The expansion breaks down in the high-energy region
* This breakdown manifests itself in inverse powers of
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So far...

* In order to compute finite top mass corrections at NNLO we can use
asymptotic expansion

* This is OK 1n the region below threshold, where the top mass is the largest
scale 1n the process

* This region dominates the cross-section after convolution with parton
luminosity

* We need a different method to compute the hard tail of the partonic
coethicient functions at NNLO



So far...

* In order to compute finite top mass corrections at NNLO we can use
asymptotic expansion

* This is OK 1n the region below threshold, where the top mass is the largest
scale 1n the process

* This region dominates the cross-section after convolution with parton
luminosity

* We need a different method to compute the hard tail of the partonic
coethicient functions at NNLO

* We can use kT—factorization



QCD factorizations

* Hard processes : collinear factorization Q > AQC D
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QCD factorizations

* Hard processes : collinear factorization Q > AQC D
dx dx T ’
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 High energy processes: k-factorization S > Q > AQC D
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High-energy factorization

*  We consider Mellin moments of the off-shell cross section:
1 o0 o0
o(N My M) = [N [t [ )M o, k)
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e So that the formula factorizes
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e To make contact with usual collinear factorization we have introduced the
Mellin moments of the integrated PDF's



QCD evolution equations

DGLAP: Q? evolution for N moments of the parton density
d

d1In(Q?/p?)

BFKL: small-x evolution for M moments of the parton density
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Duality relations

* At high energy and large Q? both BFKL and DGLAP are valid

* They admit the same leading twist solution

Fyo(N) Fo(M)
(N, M) M — ~(as, N) N — x(ag, M)
DGLAP and BFKL

* 'The kernels satisfy (consistency) duality relations

X(v(NV,as),a5) = N
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Coefficient functions at high energy

* We define the impact factor in the following way:
©.@) o
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* the explicit N dependence is sub-leading, hence we set N=0

* the high energy behaviour is found by inverting the M-Mellin transtorms using
the pole condition from the evolution equations:
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What has been computed so far

Originally used for heavy flavour production

‘000000000

Q00000000

Catani, Ciafaloni, Hautmann Nucl.Phys.B366:135-188,1991.
Ball, Ellis JHEP 0105:053,2001.

DIS and DY are more delicate because collinear singularities

(due to massless quarks) must be consistently factorized
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Catani, Hautmann Nucl.Phys.B427:475-524,1994.
SM, Ball Nucl.Phys.B814:246-264,2009

Direct photon: final state singularities

Diana, Nucl.Phys.B824:154-167,2010.



Computation 1n k-factorization

* We compute the LO off-shell cross section for

97 (&) g (&) —H
* The impact factor 1s
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* The form factor ensures that the Mellin integrals have finite radius of convergence
when N =0
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Partonic results

* We numerically evaluate the coetficient of the leading logarithm at small-x 1n
the gg channel

* We then compute the small-x behaviour of the other channels using colour

charge relations C 2
_br s
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* We checked the NLO coefhicients against the full result.



Hadronic results (NLO)

* We construct an approximation to the exact cross-section by matching the 1/m,
expansion to the small-x limit (with the full m, dependence)
* In order to test this procedure we first study the NLO case
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* The convergence of the approximate result toward the exact one 1s excellent
* We apply the same procedure to the next order



Hadronic results (NNLO)

* At NNLO we compute ratios of the our approximation to the EFT results
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* Finite top mass effects at NNLO are below 1% both at the Tevatron and LHC
* The EFT approach 1s tully justified to NNLO (for the inclusive cross-section)



Conclusions

* | have presented a calculation for Higgs production in g-g fusion to NNLO

* Below threshold finite top mass corrections are included performing asymptotic
expansions of the Feynman diagrams

* In the high partonic centre of mass region this approach fails

* The small-x limit has been computed using k-factorization and then matched
to the 1/m, expansion

* Finite top mass eftfects at NNLO are below 1% both at the Tevatron and LHC
* The EFT approach is fully justified to NNLO (for the inclusive cross-section)

* This calculation 1s an example of a fruitful interplay between fixed-order and
resummation techniques !



Thank you !



